The Shocking Revelation of C4H14Cl2N2S2

COA of Formula: C4H14Cl2N2S2. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Li, YM; Chen, XL; Ji, JB; Li, LB; Zhai, GX or concate me.

An article Redox-responsive nanoparticles based on Chondroitin Sulfate and Docetaxel prodrug for tumor targeted delivery of Docetaxel WOS:000608727400001 published article about DRUG-DELIVERY in [Li, Yimu; Chen, Xuling; Ji, Jianbo; Li, Lingbing; Zhai, Guangxi] Shandong Univ, Cheeloo Coll Med, Sch Pharmaceut Sci, Dept Pharmaceut,Minist Educ,Key Lab Chem Biol, 44 Wenhuaxi Rd, Jinan 250012, Shandong, Peoples R China; [Li, Yimu] Fudan Univ, Sch Pharm, Dept Med Chem, 826 Zhangheng Rd, Shanghai 201203, Peoples R China in 2021.0, Cited 15.0. COA of Formula: C4H14Cl2N2S2. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7

In this paper, a novel redox-responsive nanoparticles has been designed for targeted delivery of docetaxel (DTX). Chondroitin sulfate (CS) was used to construct the nanoparticles due to the ability of tumor targeting through binding with CD44 receptor that overexpresses on the surfaces of various tumor cells. A redox-responsive small-molecular DTX prodrug was prepared through modifying with cystamine containing disulfide bonds (Cys-DTX). Then the DTX prodrug was grafted to the CS to construct the amphiphilic polymer (CS-ss-DTX). Further, Cys-DTX/CS-ss-DTX nanoparticles were formed by self-assembly of amphiphilic polymer and incorporation of free Cys-DTX prodrug. This category of nanosized DTX delivery system was expected for not only exhibiting high permeability and cytotoxicity of Cys-DTX prodrug, but also targeting transportation of encapsulated redox-responsive Cys-DTX prodrug. According to results of related researches on physicochemical properties and biological evaluation, the novel redox-responsive Cys-DTX/CS-ss-DTX nanoparticles increased amount of DTX released from the nanoparticles in reductive environment, improved permeability in tumor tissues, enhanced cytotoxicity and decreased side effects compared with free DTX. All of these results showed that this kind of Cys-DTX/CS-ss-DTX nanoparticles were worthy of being expectation in tumor chemotherapy in future.

COA of Formula: C4H14Cl2N2S2. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Li, YM; Chen, XL; Ji, JB; Li, LB; Zhai, GX or concate me.

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

Our Top Choice Compound:C4H14Cl2N2S2

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Chen, Y; Ren, JL; Tian, D; Li, YC; Jiang, H; Zhu, JT or concate me.. Safety of 2,2′-Disulfanediyldiethanamine dihydrochloride

Safety of 2,2′-Disulfanediyldiethanamine dihydrochloride. In 2019.0 BIOMACROMOLECULES published article about UP-CONVERSION NANOPARTICLES; DRUG-RELEASE; COMBINATION; PLATFORM; POLYPRODRUG; DOXORUBICIN; NANOPROBES in [Chen, Yu; Ren, Jingli; Tian, Di; Li, Yuce; Jiang, Hao; Zhu, Jintao] HUST, Sch Chem & Chem Engn, Minist Educ, Key Lab Mat Chem Energy Convers & Storage, Wuhan 430074, Hubei, Peoples R China in 2019.0, Cited 41.0. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7.

Chemo-photodynamic combined therapy is promising in cancer treatment, although low tissue penetration of visible light for activating photosensitizers (e.g., chlorin e6, Ce6) limited its broad applications. Combination of upcoverting nanoparticles (UCNPs) with the photosensitizers endows us with the possibility to utilize highly tissue penetrable near-infrared light; nevertheless, the mismatch between absorption of common photosensitizers (lambda(abs), mainly red) and emission of UCNPs (lambda(em), mainly green) resulted in low energy utilization and unsatisfied therapeutic efficacy in the current UCNP-PDT (photodymanic therapy) platforms. To resolve this problem, herein, we construct polymer-UCNP hybrid micelles (PUHMs) for codelivery of doxorubicin (DOX) and Ce6, and systemically studied the effects of spectral match between lambda(em) of UCNPs and lambda(abs) of Ce6 on efficiency of synergistic chemo-photodynamic therapy. Compared with spectrally mismatched PUHMs, the spectrally matched PUHMs can significantly enhance the utilization efficiency of upconverted emission energy to activate the photosensitizers and generate more reactive oxygen species (ROS) for enhanced photodynamic therapy. Meanwhile, as the assembled structure of PUHMs can be destroyed by the oxidation of ROS upon 980 nm laser irradiation because of the hydrophobic-hydrophilic transformation of poly(propylene sulfide) (PPS) segment, the spectrally matched PUHMs triggered faster release of DOX, thus resulting in more effective chemotherapy. As a result, the spectrally matched PUHMs induced more prominent cytotoxicity and superior synergistic therapeutic effect for cancer cells in vitro. Our results demonstrated that such spectrally matched PUHMs provide us with an effective strategy for photodynamic-chemo synergistic therapy.

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Chen, Y; Ren, JL; Tian, D; Li, YC; Jiang, H; Zhu, JT or concate me.. Safety of 2,2′-Disulfanediyldiethanamine dihydrochloride

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

Final Thoughts on Chemistry for 2,2′-Disulfanediyldiethanamine dihydrochloride

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Reese, CM; Guo, W; Thompson, BJ; Logan, PK; Stafford, CM; Patton, DL or concate me.. Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride

Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride. Reese, CM; Guo, W; Thompson, BJ; Logan, PK; Stafford, CM; Patton, DL in [Thompson, Brittany J.; Logan, Phillip K.; Stafford, Christopher M.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA; [Reese, Cassandra M.; Guo, Wei; Thompson, Brittany J.; Logan, Phillip K.; Patton, Derek L.] Univ Southern Mississippi, Sch Polymer Sci & Engn, Hattiesburg, MS 39406 USA published Quantifying Strain via Buckling Instabilities in Surface-Modified Polymer Brushes in 2020.0, Cited 41.0. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7.

A compressive strain applied to bilayer films (e.g., a thin film adhered to a thick substrate) can lead to buckled or wrinkled morphologies, which has many important applications in stretchable electronics, anticounterfeit technology, and high-precision micrometrology and nano-metrology. A number of buckling-based metrology methods have been developed to quantify the residual stress and viscoelastic properties of polymer thin films. However, in some systems (e.g., solvent-induced swelling or thermal strain), the compressive strain is unknown or difficult to measure. We present a quantitative method of measuring the compressive strain of wrinkled polymer films and coatings with knowledge of the skin thickness, wrinkle wavelength, and wrinkle amplitude. The derived analytical expression is validated with a well-studied model system, e.g., a stiff, thin film bonded to a thick, compliant substrate. After validation, we use our expression to quantify the applied swelling strain of previously reported wrinkled poly(styrene-alt-maleic anhydride) brush surfaces. Finally, the applied strain is used to rationalize the observed persistence length of aligned wrinkles created during atomic force microscopy lithography and subsequent solvent exposure.

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Reese, CM; Guo, W; Thompson, BJ; Logan, PK; Stafford, CM; Patton, DL or concate me.. Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

Let`s talk about compound :2,2′-Disulfanediyldiethanamine dihydrochloride

Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Guo, C; Gao, JF; Ma, SK; Zhang, HQ or concate me.

Authors Guo, C; Gao, JF; Ma, SK; Zhang, HQ in PERGAMON-ELSEVIER SCIENCE LTD published article about LIQUID-CRYSTALLINE ELASTOMERS in [Guo, Chen; Gao, Jianfeng] North Univ China, Dept Chem, Coll Sci, Taiyuan 030051, Peoples R China; [Guo, Chen; Ma, Shengkui; Zhang, Huiqi] Nankai Univ, State Key Lab Med Chem Biol, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Key Lab Funct Polymer Mat,Minist Educ, Tianjin 300071, Peoples R China; [Guo, Chen; Ma, Shengkui; Zhang, Huiqi] Nankai Univ, Coll Chem, Tianjin 300071, Peoples R China in 2020.0, Cited 33.0. Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7

Chemically crosslinked recyclable photodeformable azobenzene (azo) polymer actuators with good stability (toward organic solvents and higher temperatures) and high processability and reconstruction ability hold great promise in many applications, but their development remains a challenging task. Herein, we report on for the first time a facile and highly efficient post-crosslinking method for addressing this issue. It involves first the synthesis of side-chain polymers bearing N-hydroxysuccinimide (NHS) carboxylate-substituted azo mesogens, fabrication of uniaxially oriented fibers from these azo polymers by the simple melt spinning method, and their subsequent post-crosslinking with cystamine (a diamine containing a disulfide bond) under mild conditions. The resulting chemically crosslinked fibers not only showed rapid and reversible photoinduced bending and unbending at ambient temperature as well as high mechanical strength and good solvent/heating stability, but also could be easily recycled into processable azo polymers in the presence of a reducing agent that can cleave the disulfide bond into thiol groups (i.e., tributylphosphine). In particular, the occurrence of the post-crosslinking reaction only on the thin surface layers of the azo polymer fibers afforded recycled polymers with large amounts of NHS carboxylate-substituted azo mesogens (together with a small amount of oxygen/heating-sensitive thiolsubstituted ones) in the first several (at least 5) recycling processes, thus allowing highly efficient reconstruction of photodeformable fibers with excellent photomobile properties by applying melt spinning and post-cross-linking (by using cystamine) methods. The strategy presented here opens the new possibility to the facile and efficient development of various advanced chemically crosslinked recyclable photodriven actuators.

Quality Control of 2,2′-Disulfanediyldiethanamine dihydrochloride. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Guo, C; Gao, JF; Ma, SK; Zhang, HQ or concate me.

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

The Absolute Best Science Experiment for C4H14Cl2N2S2

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Yin, SP; Gao, Y; Zhang, Y; Xu, JN; Zhu, JP; Zhou, F; Gu, XC; Wang, GJ; Li, J or concate me.. Product Details of 56-17-7

Authors Yin, SP; Gao, Y; Zhang, Y; Xu, JN; Zhu, JP; Zhou, F; Gu, XC; Wang, GJ; Li, J in AMER CHEMICAL SOC published article about ASSEMBLED NANOPARTICLES; INTRACELLULAR DELIVERY; DRUG-RELEASE; MICELLES; MICROENVIRONMENT; COMBINATION; DOXORUBICIN; NANOSYSTEM; CONJUGATE; LIPOSOMES in [Yin, Shaoping; Gao, Yi; Zhang, Yu; Xu, Jianan; Zhu, Jianping; Li, Juan] China Pharmaceut Univ, Dept Pharmaceut, State Key Lab Nat Med, Nanjing 210009, Peoples R China; [Zhou, Fang; Wang, Guangji] China Pharmaceut Univ, Ctr New Drug Safety Evaluat & Res, Nanjing 210009, Peoples R China; [Gu, Xiaochen] Univ Manitoba, Fac Pharm, Winnipeg, MB R3E 0T5, Canada in 2020.0, Cited 53.0. Product Details of 56-17-7. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7

Deep tumor penetration, long blood circulation, rapid drug release, and sufficient stability are the most concerning dilemmas of nano-drug-delivery systems for efficient chemotherapy. Herein, we develop reduction/oxidation-responsive hierarchical nanoparticles co-encapsulating paclitaxel (PTX) and pH-stimulated hyaluronidase (pSH) to surmount the sequential biological barriers for precise cancer therapy. Poly(ethylene glycol) diamine (PEG-dia) is applied to collaboratively cross-link the shell of nanoparticles self-assembled by a hyaluronic acid-stearic acid conjugate linked via a disulfide bond (HA-SS-SA, HSS) to fabricate the hierarchical nanoparticles (PHSS). The PTX and pSH coloaded hierarchical nanoparticles (PTX/pSH-PHSS) enhance the stability in normal physiological conditions and accelerate drug release at tumorous pH, and highly reductive or oxidative environments. Functionalized with PEG and HA, the hierarchical nanoparticles preferentially prolong the circulation time, accumulate at the tumor site, and enter MDA-MB-231 cells via CD44-mediated endocytosis. Within the acidic tumor micro-environment, pSH would be partially reactivated to decompose the dense tumor extracellular matrix for deep tumor penetration. Interestingly, PTX/pSH-PHSS could be degraded apace by the completely activated pSH within endo/lysosomes and the intracellular redox micro-environment to facilitate drug release to produce the highest tumor inhibition (93.71%) in breast cancer models.

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Yin, SP; Gao, Y; Zhang, Y; Xu, JN; Zhu, JP; Zhou, F; Gu, XC; Wang, GJ; Li, J or concate me.. Product Details of 56-17-7

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

What unique challenges do researchers face in 56-17-7

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Wang, R; Lin, J; Huang, SH; Wang, QY; Hu, QH; Peng, S; Wu, LN; Zhou, QH or concate me.. COA of Formula: C4H14Cl2N2S2

COA of Formula: C4H14Cl2N2S2. In 2021.0 ACS OMEGA published article about HEAVY-METAL IONS; LEAD REMOVAL; POLYMER; NANOFIBERS; COMPOSITE; LIGNIN in [Wang, Rui; Huang, Shuang-hui; Wang, Qiu-yue; Hu, Qiuhui; Peng, Si; Zhou, Qing-han] Southwest Minzu Univ, Sch Chem & Environm, Natl Ethn Affairs Commiss, Key Lab Basic Chem, Chengdu 610041, Peoples R China; [Lin, Juan] Chengdu Med Coll, Sch Biomed Sci & Technol, Chengdu 610500, Peoples R China; [Wu, Li-na] Chengdu Med Coll, Dept Anat & Histol & Embryol, Dev & Regenerat Key Lab Sichuan Prov, Chengdu 610500, Peoples R China in 2021.0, Cited 38.0. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7.

The efficient selectivity of heavy metal ions from wastewater is still challenging but gains great public attention in water treatment on a world scale. In this study, the novel disulfide cross-linked poly(methacrylic acid) iron oxide (Fe3O4@S-S/PMAA) nanoparticles with selective adsorption, improved adsorption capability, and economic reusability were designed and prepared for selective adsorption of Pb(II) ions in aqueous solution. In this study, nuclear magnetic resonance, dynamic light scattering, scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, and thermogravimetric analysis were utilized to study the chemophysical properties of Fe3O4@S-S/PMAA. The effect of different factors on adsorption properties of the Fe3O4@S-S/PMAA nanoparticles for Co(II) and Pb(II) ions in aqueous solution was explored by batch adsorption experiments. For adsorption mechanism investigation, the adsorption of Fe3O4@S-S/PMAA for Co(II) and Pb(II) ions can be better fitted by a pseudo-second-order model, and the adsorption process of Fe3O4@S-S/PMAA for Co(II) and Pb(II) matches well with the Freundlich isotherm equation. Notably, in the adsorption experiments, the Fe3O4@S-S/PMAA nanoparticles were demonstrated to have a maximum adsorption capacity of 48.7 mg.g(-1) on Pb(II) ions with a selective adsorption order of Pb2+ > Co2+ > Cd2+ > Ni2+ > Cu2+ > Zn2+ > K+ > Na+ > Mg2+ > Ca2+ in the selective experiments. In the regeneration experiments, the Fe3O4@S-S/PMAA nanoparticles could be easily recovered by desorbing heavy metal ions from the adsorbents with eluents and showed good adsorption capacity for Co(II) and Pb(II) after eight recycles. In brief, compared to other traditional nanoadsorbents, the as-prepared Fe3O4@S-S/PMAA with improved adsorption capability and high regeneration efficiency demonstrated remarkable affinity for adsorption of Pb(II) ions, which will provide a novel technical platform for selective removal of heavy metal ions from actual polluted water.

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Wang, R; Lin, J; Huang, SH; Wang, QY; Hu, QH; Peng, S; Wu, LN; Zhou, QH or concate me.. COA of Formula: C4H14Cl2N2S2

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

Chemistry Milestones Of 2,2′-Disulfanediyldiethanamine dihydrochloride

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Zhang, YB; Liu, SY; Li, TY; Zhang, LQ; Azhar, U; Ma, JC; Zhai, CC; Zong, CY; Zhang, SX or concate me.. Recommanded Product: 56-17-7

An article Cytocompatible and non-fouling zwitterionic hyaluronic acid-based hydrogels using thiol-ene click chemistry for cell encapsulation WOS:000519306900023 published article about FOREIGN-BODY RESPONSE; GLYCOL) HYDROGELS; MICHAEL ADDITION; CROSS-LINKING; STEM-CELLS; RESISTANCE; COATINGS; RELEASE; CULTURE in [Zhang, Yabin; Liu, Shuyan; Li, Tianyu; Zhang, Luqing; Azhar, Umair; Ma, Jiachen; Zhai, Congcong; Zong, Chuanyong; Zhang, Shuxiang] Univ Jinan, Sch Chem & Chem Engn, Shandong Prov Key Lab Fluorine Chem & Chem Mat, Jinan 250022, Peoples R China in 2020.0, Cited 49.0. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7. Recommanded Product: 56-17-7

In this work, a facile click reaction strategy is employed to form hydrogels in situ with cytocompatibility, biodegradability, self-healing property and resistance to protein. The thiol-functionalized zwitterionic carboxybetaine methacrylate copolymer, which take part as a cross-linker in the thiol-ene click reaction with the methacrylated hyaluronic acid. The hydrogels are obtained under the physiological condition without the presence of any copper catalyst and UV light. The hydrogel consisting of zwitterionic component shows an obvious reduction in protein adsorption and cell adhesion and avoid non-targeted factor interference in the biological experiments. The hydrogels also demonstrate adjustable degradation behavior. Human mesenchymal stem cells (hMSCs) are easily encapsulated into the hydrogels and remains metabolically active, indicating the excellent biocompatibility of the hydrogels. Additionally, the result of the cytokine secretion assays (IL-6 and TNF-alpha) has shown that this clickable hydrogel can serve to suppress inflammatory reactions and is beneficial for in vivo applications. Based on the above results, this clickable hydrogel with excellent performance can be an amenable platform for 3D cell encapsulation.

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Zhang, YB; Liu, SY; Li, TY; Zhang, LQ; Azhar, U; Ma, JC; Zhai, CC; Zong, CY; Zhang, SX or concate me.. Recommanded Product: 56-17-7

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

The Absolute Best Science Experiment for 2,2′-Disulfanediyldiethanamine dihydrochloride

Category: thiazines. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Canovas, C; Moreau, M; Vrigneaud, JM; Bellaye, PS; Collin, B; Denat, F; Goncalves, V or concate me.

Recently I am researching about PROSTATE-CANCER; IN-VITRO; CYCLOADDITIONS; FLUORESCENT; TETRAZINES; ANTIBODIES; CHELATORS, Saw an article supported by the French National Research Agency (ANR) under the programs Investissements d’AvenirFrench National Research Agency (ANR) [ANR-10-EQPX-05-01]; AAP Generique 2017 (project ZINELABEL); CNRSCentre National de la Recherche Scientifique (CNRS)European Commission; Universite de Bourgogne; Ministry of Higher Education, Research and Innovation; Conseil Regional de Bourgogne Franche-Comte through the Plan d’Action Regional pour l’Innovation (PART); European Union through the PO FEDER-FSE 2014/2020 Bourgogne program. Category: thiazines. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Canovas, C; Moreau, M; Vrigneaud, JM; Bellaye, PS; Collin, B; Denat, F; Goncalves, V. The CAS is 56-17-7. Through research, I have a further understanding and discovery of 2,2′-Disulfanediyldiethanamine dihydrochloride

The combination of two imaging probes on the same biomolecule gives access to targeted bimodal imaging agents that can provide more accurate diagnosis, complementary information, or that may be used in different applications, such as nuclear imaging and fluorescence guided surgery. In this study, we demonstrate that dichlorotetrazine, a small, commercially available compound, can be used as a modular platform to easily assemble various imaging probes. Doubly labeled tetrazines can then be conjugated to a protein through a biorthogonal IEDDA reaction. A series of difunctionalized tetrazine compounds containing various chelating agents and fluorescent dyes was synthesized. As a proof of concept, one of these bimodal probes was conjugated to trastuzumab, previously modified with a constrained alkyne group, and the resulting dual-labeled antibody was evaluated in a mouse model, bearing a HER2-positive tumor. A significant uptake into tumor tissues was observed in vivo, by both SPECT-CT and fluorescence imaging, and confirmed ex vivo in biodistribution studies.

Category: thiazines. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Canovas, C; Moreau, M; Vrigneaud, JM; Bellaye, PS; Collin, B; Denat, F; Goncalves, V or concate me.

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

Discover the magic of the C4H14Cl2N2S2

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Sigircik, G or concate me.. Computed Properties of C4H14Cl2N2S2

Computed Properties of C4H14Cl2N2S2. Recently I am researching about 1 M HCL; CORROSION INHIBITION PERFORMANCE; ECO-FRIENDLY INHIBITOR; X70 STEEL; DERIVATIVES; EXTRACT; MEDIA; EFFICIENCY; COMPOUND, Saw an article supported by the . Published in ELSEVIER in AMSTERDAM ,Authors: Sigircik, G. The CAS is 56-17-7. Through research, I have a further understanding and discovery of 2,2′-Disulfanediyldiethanamine dihydrochloride

Inhibition performance of 2,2′-diaminodiethyl disulfide (DA) was studied against mild steel (MS) corrosion in 0.5 M HCl. Electrochemical impedance spectroscopy (EIS), potentiodynamic (PD) polarization measurements were utilized to investigate the influence of inhibitor concentration and temperature on efficiency, as well as explanation of inhibition mechanism. Scanning electron microscopy (SEM) analysis was utilized to investigate the surface damages due to corrosion, in the absence and presence of inhibitor molecules. PD data revealed that the studied molecule exhibits mixed type inhibitor behavior on steel surface. Moreover, the calculated free adsorption energy (Delta G(ads)(o)) value is 38.45 kJ mol(-1), which indicates to strong adsorptive interaction by both physical and chemical means. UV-Visible study results supported the idea that there is strong interaction between the surface with the molecule, via its -S and -N atoms. As a consequence, 91.7% inhibition efficiency was determined in presence of 1.0 mM DA. (C) 2020 Elsevier B.V. All rights reserved.

About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Sigircik, G or concate me.. Computed Properties of C4H14Cl2N2S2

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem

 

Chemical Properties and Facts of 56-17-7

COA of Formula: C4H14Cl2N2S2. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Guo, C; Gao, JF; Ma, SK; Zhang, HQ or concate me.

Guo, C; Gao, JF; Ma, SK; Zhang, HQ in [Guo, Chen; Gao, Jianfeng] North Univ China, Dept Chem, Coll Sci, Taiyuan 030051, Peoples R China; [Guo, Chen; Ma, Shengkui; Zhang, Huiqi] Nankai Univ, State Key Lab Med Chem Biol, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Key Lab Funct Polymer Mat,Minist Educ, Tianjin 300071, Peoples R China; [Guo, Chen; Ma, Shengkui; Zhang, Huiqi] Nankai Univ, Coll Chem, Tianjin 300071, Peoples R China published Efficient preparation of chemically crosslinked recyclable photodeformable azobenzene polymer fibers with high processability and reconstruction ability via a facile post-crosslinking method in 2020.0, Cited 33.0. COA of Formula: C4H14Cl2N2S2. The Name is 2,2′-Disulfanediyldiethanamine dihydrochloride. Through research, I have a further understanding and discovery of 56-17-7.

Chemically crosslinked recyclable photodeformable azobenzene (azo) polymer actuators with good stability (toward organic solvents and higher temperatures) and high processability and reconstruction ability hold great promise in many applications, but their development remains a challenging task. Herein, we report on for the first time a facile and highly efficient post-crosslinking method for addressing this issue. It involves first the synthesis of side-chain polymers bearing N-hydroxysuccinimide (NHS) carboxylate-substituted azo mesogens, fabrication of uniaxially oriented fibers from these azo polymers by the simple melt spinning method, and their subsequent post-crosslinking with cystamine (a diamine containing a disulfide bond) under mild conditions. The resulting chemically crosslinked fibers not only showed rapid and reversible photoinduced bending and unbending at ambient temperature as well as high mechanical strength and good solvent/heating stability, but also could be easily recycled into processable azo polymers in the presence of a reducing agent that can cleave the disulfide bond into thiol groups (i.e., tributylphosphine). In particular, the occurrence of the post-crosslinking reaction only on the thin surface layers of the azo polymer fibers afforded recycled polymers with large amounts of NHS carboxylate-substituted azo mesogens (together with a small amount of oxygen/heating-sensitive thiolsubstituted ones) in the first several (at least 5) recycling processes, thus allowing highly efficient reconstruction of photodeformable fibers with excellent photomobile properties by applying melt spinning and post-cross-linking (by using cystamine) methods. The strategy presented here opens the new possibility to the facile and efficient development of various advanced chemically crosslinked recyclable photodriven actuators.

COA of Formula: C4H14Cl2N2S2. About 2,2′-Disulfanediyldiethanamine dihydrochloride, If you have any questions, you can contact Guo, C; Gao, JF; Ma, SK; Zhang, HQ or concate me.

Reference:
Thiazine – an overview | ScienceDirect Topics,
,Thiazine | C4H5NS – PubChem